УДК: 620.168; 623.562.3

DOI: 10.53816/20753608_2021_3_107

КОМПОЗИТНЫЕ ОРГАНОКЕРАМИЧЕСКИЕ ПАНЕЛИ ДЛЯ ЗАЩИТЫ ОТ ПУЛЬ КАЛИБРА 7,62 ММ И 5,45 ММ С ТЕРМОУПРОЧНЕННЫМ СЕРДЕЧНИКОМ НА ОСНОВЕ КЕРАМИКИ АЛМАЗ-КАРБИД КРЕМНИЯ С РЕГУЛИРУЕМОЙ ВЗАИМОСВЯЗАННОЙ СТРУКТУРОЙ

COMPOSITE ORGANOCERAMIC PANELS BASED ON DIAMOND-SILICON CARBIDE CERAMICS WITH AN ADJUSTABLE INTERCONNECTED STRUCTURE FOR PROTECTION AGAINST BULLETS OF 7,62 MM AND 5,45 MM CALIBER WITH A HARDENED STEEL CORE

Академик РАРАН **М.В. Сильников¹**, **В.Я. Шевченко²**, чл.-корр. РАРАН **А.И. Михайлин¹**, **С.Н. Перевислов²**, **Н.М. Сильников¹**

¹АО «НПО Спецматериалов», ²Институт химии силикатов им. И.В. Гребенщикова РАН

M.V. Silnikov, V.Ya. Shevchenko, A.I. Mikhaylin, S.N. Perevislov, N.M. Silnikov

Рассматривается новый тип керамики с уникальной структурой и проводятся оценки его применимости к задачам бронезащиты. В качестве исходных компонентов керамики используют порошок кремния и смесь алмазных порошков с размерами частиц, обеспечивающих в дальнейшем образование иерархической структуры. В полученной микроструктуре алмаз–β-SiC кристаллы алмаза имеют правильную форму и однородно распределены в композите. По сравнению со стандартными реакционно-спеченными карбидом кремния и карбидом бора материал показал наивысшие механические характеристики.

Ключевые слова: трижды периодические поверхности минимальной энергии, реакция Тьюринга, гетерогенетические пары неорганических веществ, система алмаз (углерод)-кремний, карбиды, баллистические испытания, органокерамическая панель, пулестойкость, Бр4.

The authors consider a new type of ceramics with a unique structure and evaluate its applicability to the body armor issues. The authors consider a new type of ceramics with a unique structure and evaluate its applicability to the body armor issues. The initial components of the ceramic are silicon powder and a mixture of diamond powders with a size of particles that subsequently provide the formation of a hierarchical structure. In the resulting microstructure-diamond — β -SiC, the diamond crystals have a regular shape and are uniformly distributed in the composite. Compared with a standard reaction-sintered silicon carbide and a boron carbide, the material showed the highest mechanical characteristics.

Keywords: triple-periodic surfaces of minimum energy, Turing reaction, heterogeneous pairs of inorganic substances, diamond(carbon)-silicon system, carbides, ballistic tests, organoceramic panel, bullet resistance, Br4.

Введение

Одними из основных свойств, определяющих защитные характеристики композитных панелей при воздействии боеприпасами с термоупрочненным сердечником, являются твердость и модуль упругости керамики [1–5]. Развитие современной технологии позволяет повысить уровень этих свойств керамики, приблизив их значение к предельному, наблюдаемому у алмаза. Представленная работа рассматривает новый тип композиционной керамики на основе алмазных частиц с уникальной трижды периодической микроструктурой и оценивает перспективу использования ее в качестве бронезащиты.

Из известных керамик на основе карбида кремния и карбида бора получают композиты на основе двух и более компонентов, обладающие оптимальными свойствами. Для этого используют технологию реакционного спекания (пропитки расплавом жидкого кремния пористых заготовок, до получения монолитного материала). Преимуществом данного метода, по сравнению с горячим прессованием, является более низкая температура спекания материалов, возможность использования крупных исходных порошков, высокая производительность [6]. Так, реакционно-спеченный карбид кремния получают при температуре выше температуры плавления кремния (1414 °C).

В качестве примера можно также привести получение реакционно-спеченного карбида кремния, армированного частицами карбида бора [7]. Выбор в качестве второго компонента карбида бора обусловлен желанием сохранить высокую твердость керамики при снижении её плотности.

В работах [8–10] описан метод получения композиционного материала алмаз-карбид кремния, полученный методом реакционной пропитки жидким кремнием пористой заготовки из алмазных частиц.

Из основных этапов метода реакционного спекания можно выделить следующие:

 прессование заготовок из порошков требуемого состава;

 – создание материалов, включающих систему открытых пор между частицами заготовки;

заполнение пор заготовки расплавом кремния;

 контроль за течением химической реакции между алмазными частицами, углеродом и кремнием путем регулирования концентрации компонентов, температуры спекания и выдержки при спекании.

Новый композиционный материал алмаз-карбид кремния назван «Идеал» [11, 12].

В материале «Идеал» карбид кремния синтезируется в результате реакционно-диффузионного взаимодействия кремния с графитом, образовавшемся на поверхности алмазных частиц при их поверхностной графитизации [13]. Важным условием при спекании является наличие хорошо ограненных частиц алмаза, что приводит к образованию когерентных границ растущих кристаллов карбида кремния на частицах алмаза.

В качестве исходных компонентов композиционного материала алмаз-карбид кремния используют смесь алмазных порошков разного фракционного состава, для обеспечения плотной упаковки частиц заготовки при формовании. Регулирование концентрации компонентов, температуры процесса пропитки, давления среды и т.д. позволяет реализовать реакционно-диффузионный механизм Тьюринга (синтеза и роста «забора» Тьюринга — кристаллов карбида кремния на частицах алмаза [14, 15]) и получить материал с регулярной (периодической) микроструктурой. Материал «Идеал», по сравнению со стандартными реакционно-спеченными материалами на основе карбида кремния и карбида бора [6], характеризуется наивысшими механическими характеристиками (выше только у монокристаллического алмаза) (таблица). В полученной микроструктуре композиционного материала алмаз-карбид кремния частицы алмаза имеют правильную форму и однородно распределены в объеме композита (рис. 1). Пор в материале практически нет, что говорит о прочной межфазной связи между алмазом и карбидом кремния, вследствие полного протекания экзотермической реакции образования карбида кремния.

Рис. 1. Микроструктура композиционного материала алмаз-карбид кремния («Идеал»)

Материал	Плотность р, г/см ³	Модуль упругости <i>E</i> , ГПа	Прочность при изгибе, МПа	Скорость звука, м/с	Коэффициент трещиностойкости, МПа·м ^{1/2}	Твердость по Виккерсу, ГПа
SiSiC	3,10	329	400	10200	3,5	21
LPSSiC	3,25	358	520	10800	5,5	21
HPB4C	2,75	431	450	13000	3,8	32
Композит «Идеал»	3,35	754	420	15000	4,5	65

Механические свойства материалов на основе SiC, B4C и алмаза

SiSiC — реакционно-спеченный карбид кремния; LPSSiC — жидкофазно-спеченный карбид кремния; HPB₄C — горячепрессованный карбид бора

Методика эксперимента и результаты баллистических испытаний

Существует несколько методик оценки баллистических характеристик собственно керамики [16]. Однако на практике керамика используется в составе композитных блоков, включающих, помимо керамического слоя, металлическую или полимерную подложку, а также тканевый защитный пакет. Поэтому целесообразно проводить оценку защитных свойств керамики в составе защитной структуры.

Испытания проводили на модельных образцах композитных органокерамических структур. Образец представлял собой отдельную керамическую плитку размером 65×65 мм и толщиной 5,5 мм, закрепленную с помощью монтажной этиленвинилацетатной пленки толщиной 300 мкм на прессованную пластину из UD сверхвысокомодульного полиэтилена, размером 800×800 мм и толщиной 11 мм. Образцы композитных структур обмотаны двумя слоями арамидной ткани Тварон 716. Структура образца представлена на рис. 2. При обстреле образцы помещали на слой войлока.

В случае испытаний единичной керамической плитки при обстреле ударные волны сжатия распространяются в объеме керамической плитки, при достижении границ плитки отражаются и переходят в волны растяжения. Суперпозиция волн растяжения приводит к росту существующих трещин и образованию новых. Следует учитывать, что условия испытаний при обстреле единичной плитки оказываются значительно более сложными, чем при испытании комплексной структуры, состоящей из нескольких соприкасающихся плиток. При обстреле из автомата AK-103 калибра 7,62 мм пулями ПС со стальным термоупрочнённым сердечником, патрона инд. 57-H-231 на дистанции 10 м, все образцы выдержали испытание.

Наружные слои арамидных пакетов пробиты и разорваны на площади, примерно в 10 раз превышающей площадь соударения (рис. 3). Картина разрушения керамики во всех случаях характеризуется протяженной областью разрушения с образованием так называемого «обратного» конуса Герца. Опорный слой во всех случаях частично пробит и сильно деформирован, наблюдается частичное расслоение. Тыльный слой арамидных пакетов не поврежден.

Поскольку при испытаниях используется единичная керамическая плитка, важную роль играет место попадания пули — в центр плитки или вблизи края. Можно ожидать, что попадание в центр плитки будет иметь менее разрушитель-

Рис. 2. Образец для баллистических испытаний:
1— керамическая плитка; 2 — подложка из сверхвысокомолекулярного полиэтилена;
3 — монтажная пленка, склеивающая керамику и подложку; 4 — обмотка образца арамидной тканью

Рис. 3. Образец после выстрела из автомата AK-103 калибра 7,62 мм пулей ПС со стальным термоупрочнённым сердечником, патрона инд. 57-H-231 со скоростью 706 м/с: а — внешний вид; б — вид разрушенной керамической плитки на подложке после снятия внешнего арамидного пакета

ные последствия по сравнению с попаданием вблизи края.

На рис. 3 представлен вид образца после выстрела вблизи центра плитки (скорость пули 706 м/с). Место попадания пули в плитку смещено по диагонали от центра примерно на 2 мм. Разрушение керамической плитки характеризуется 4–5 крупными фрагментами (кусками) керамики в совокупности составляющими до 2/3 объема плитки, несколькими более мелкими фрагментами помельче и большим количеством мелких и мельчайших фрагментов в области, примыкающей к левому верхнему углу, ближайшему к месту попадания пули.

Подобная картина разрушения наблюдается и при попадании пули вблизи угла плитки (рис. 4). Место попадания пули в этом случае смещено к правому нижнему углу плитки. Зона сплошного разрушения керамической плитки захватывает примерно треть объёма плитки и расположена в углу, ближайшему к месту попадания пули. Вся остальная часть плитки разрушена на несколько больших фрагментов радиальными трещинами. Аналогичная картина наблюдалась и для других образцов со смещенной точкой попадания пули.

Следует отметить, что при попадании вблизи угла плитки реализуются наименее благоприятные, с точки зрения проверки на пулестойкость, условия. В этой области расстояния до свободных поверхностей плитки оказываются сопоставимыми с её толщиной. Поэтому велика вероятность интерференции волн разгрузки, образовавшихся при отражении волн нагрузки от свободных боковых поверхностей. Возникающие большие растягивающие напряжения приводят к дроблению керамики с образованием мелких частиц. В более

Рис. 4. Образец после выстрела из автомата АК-103 калибра 7,62 мм пулей ПС со стальным термоупрочнённым сердечником, патрона инд. 57-H-231 со скоростью 714 м/с: а — внешний вид; б — вид разрушенной керамической плитки на подложке после снятия внешнего арамидного пакета

отдаленной области формируются радиальные трещины, распространяющиеся вплоть до выхода на поверхность плитки. Наблюдаемая картина разрушения керамической плитки свидетельствует о высоком потенциале композита «Идеал» в качестве броневого материала.

При взаимодействии с керамической плиткой медная оболочка пули разрывается, а сердечник из высокопрочной углеродистой стали, имеющий твердость 56 HRC, частично разрушается. На рис. 5 представлен вид исходного сердечника пули и вид сердечника, застрявшего в опорном слое из прессованного UD сверхвысокомолекулярного полиэтилена. Длина сердечника пули при прохождении керамического слоя уменьшилась с 20 мм до 14 мм, то есть на 30 %, а его масса уменьшилась с 3,5 г до 3,1 г — на 10 %. Срабатывание (разрушение) сердечника при прохождении керамического слоя приводит к тому, что первоначально коническая форма наконечника превращается в плоскую со следами эрозии (рис. 5).

После пробития керамической плитки сердечник проникает в опорный слой примерно на половину его толщины. Диаметр перфорации отдельных слоев подложки брони быстро уменьшается с 20 мм у поверхностного слоя, до 1 мм у 49 слоя. Слои после испытаний имеют обугленные края, что говорит о значительном нагревании сердечника пули при прохождении через керамическую плитку (рис. 6). В конечном положении сердечник во всех случаях был развернут на угол около 75° по отношению к первоначальной траектории движения. Во всех случаях адгезия между керамическими плитками и подложкой была полностью нарушена.

При испытаниях защитной структуры использовали также автомат АК-74 с патронами инд. 7H10, пулей ПП со стальным термоупрочненным сердечником. Все образцы выдержали испытания. На рис. 7 представлен вид образца после обстрела пулей калибра 5,45 мм.

Обсуждение результатов

В работе при испытаниях использовали изолированную керамическую плитку. Боковые поверхности плитки были свободными. В этих условиях

Рис. 5. Вид термоупрочненного сердечника пули калибра 7,62: слева — исходный, справа — после выстрела по защитной структуре

Рис. 6. Слои подложки после выстрела. Слева направо: 1-й, 25-й и 49-й

Рис. 7. Образец после выстрела из автомата АК-74 с патронами инд. 7H10, пулей ПП со стальным термоупрочненным сердечником (скорость 906 м/с). Показаны лицевая и тыльные стороны образца

возникшие при ударе волны сжатия распространяются по керамике и отражаются от свободных боковых поверхностей в виде волн растяжения. Суперпозиция волн растяжения и их взаимодействие с зародившимися трещинами приводит к разрушению керамики. Кроме того, из-за наличия свободных боковых поверхностей, разрушенные частицы керамики могут разрушаться и отлетать от зоны попадания пули и снизить, тем самым, абразивное воздействие на материал пули.

В [17] показано, что наличие стальной рамки, ограничивающей керамическую плитку с боков, приводит к заметному повышению защитных свойств керамики на основе В4С при воздействии пуль с термоупрочненным сердечником калибра 7,62, по сравнению с плиткой со свободными боковыми поверхностями. По данным [18], эффект снижения защитных свойств за счет свободных боковых поверхностей проявляется особенно сильно в условиях, когда характерный размер плитки превышает диаметр ударника не более чем в 15 раз, в нашем случае это соотношение равно 11. Для попаданий вблизи угла плитки расстояние до свободных поверхностей минимально, и в этом случае эффект снижения защитных свойств керамики должен проявляться особенно сильно. Но и при попаданиях вблизи угла плитки структура выдержала испытания, что говорит о высоком потенциале керамики «Идеал» в качестве броневого материала. Совершенствование средств индивидуальной защиты идет одновременно по нескольким направлениям [19-21], и одним из важнейших является создание новой высокопрочной керамики.

Оценим характеристики керамики «Идеал» с точки зрения практического применения в средствах индивидуальной защиты. Поверхностная плотность исследованной в настоящей работе защитной структуры: керамика — 8,53 кг/м²; подложка из сверхвысокомолекулярного полиэтилена — 10,67 кг/м²; защитный арамидный пакет — 1,12 кг/м²; монтажная пленка — 0, 60 кг/м². В целом поверхностная плотность защитной структуры составляет 20,9 кг/м², что позволяет получить защитную панель класса Бр4 стандартной площадью 7,5 дм² и массой менее 1,6 кг.

Выводы

Представленная работа рассматривает новый тип композиционной керамики на основе алмазных частиц с уникальной трижды периодической микроструктурой и провести оценки использования ее в качестве бронезащиты. Композиционный материал алмаз-карбид кремния («Идеал») получен пропиткой жидким кремнием пористой заготовки из алмазных частиц. Регулирование концентрации компонентов, температуры процесса пропитки, давления среды и т.д. позволяет реализовать реакционно-диффузионный механизм Тьюринга (синтеза и роста «забора» Тьюринга — кристаллов карбида кремния на частицах алмаза) и получить материал с регулярной (периодической) микроструктурой. Материал «Идеал», по сравнению со стандартными реакционно-спеченными материалами на основе SiC и B4C, характеризуется наивысшими механическими характеристиками (выше только у монокристаллического алмаза).

Защитная конструкция, состоящая из керамической плитки («Идеал») и пластины из

сверхвысокомодульного полиэтилена испытывалась при обстреле из автомата АК-103 калибра 7,62 мм пулями ПС со стальным термоупрочнённым сердечником, патрона инд. 57-H-231, а также автомата АК-74 с патронами инд. 7H10, пулей ПП со стальным термоупрочненным сердечником, все образцы выдержали испытание. Полученные результаты свидетельствуют о высокой эффективности новой керамики и возможности создания на ее основе защитных композитных панелей с уникально низкой поверхностной плотностью.

Работа выполнена при поддержке гранта РНФ № 21-73-30019 «Новые физические и химические принципы технологии металлических, металлокерамических и керамических материалов с управляемой макро-, микро- и наноструктурой и уникальными служебными характеристиками».

Литература

1. Григорян В.А., Кобылкин И.Ф., Маринин В.М., Чистяков Е.Н. Материалы и защитные структуры для локального и индивидуального бронирования — Москва.: РадиоСофт. 2008. 406 с.

2. Анастасиади Г.П., Сильников М.В. Работоспособность броневых материалов. — СПб: Астерион. 2004. 624 с.

3. Paul J. Hazel. Armour. Materials, Theory and Design. CRC Press. 2015. P. 395.

4. Rosenberg Z., Dekel E. Terminal Ballistics — Springer Berlin Heidelberg. Berlin. Heidelberg. 2012.

5. Зайцев Г.П. Корундовая бронекерамика: опыт производства и применения // Экспертный союз. 2012. № 3 (24).

6. Nesmelov D.D., Perevisiov S.N. Reaction sintered materials based on boron carbide and silicon carbide // Glass and Ceramics. 2015. V. 71. N_{2} 9–10. P. 313–319.

7. Анискович В.А., Маркелов Е.Б. Комбинированная броня на основе керамико-композитных материалов. — М.: «Граница». 2018. 272 с.

8. Shevchenko V.Y., Perevislov S.N., Ugolkov V.L. Physicochemical interaction processes in the carbon (diamond)–silicon system // Glass Physics and Chemistry. 2021. V. 47. № 3. P. 197–208.

9. Shevchenko V.Ya., Oryshchenko A.S., Perevislov S.N., Silnikov M.V. About the criteria

for the choice of materials to protect against the mechanical dynamic loading // Glass Physics and Chemistry. 2021. V. 47. № 4. P. 281–288.

10. Shevchenko V.Ya., Perevislov S.N. Reaction– diffusion mechanism of synthesis in the diamond– silicon carbide system // Russian Journal of Inorganic Chemistry. 2021. V. 66. № 8. P. 1107–1114.

11. Ковальчук М.В., Орыщенко А.С., Шевченко В.Я. и др. Пат. № 2731703. 2020. Заявка № 2019136844 от 15.11.2019.

12. Ковальчук М.В., Орыщенко А.С., Шевченко В.Я. и др. Пат. № 2732258. 2020. Заявка № 2019143480 от 19.12.2019.

13. Khmelnitsky R.A., Gippius A.A. Transformation of diamond to graphite under heat treatment at low pressure // Phase Transitions. 2014. V. 87. № 2. P. 175–192.

14. Turing A. The chemical basis of morphogenesis // Philos. Trans. R. Soc. London. Ser. B. 1952. V. 237. № 641. P. 37–72.

15. Shevchenko V.Y., Kovalchuk M.V., Oryshchenko A.S., Perevislov S.N. New chemical technologies based on Turing reaction–diffusion processes // Doklady Chemistry. Pleiades Publishing. 2021. V. 496. № 2. P. 28–31.

16. I.G. Grouch, Ed. The science of armour materials. Woodhead Publishing. 2016. P. 754

17. Savio S.G., Ramanjaneyulu K., Madhu V. et al. An experimental study of ballistic performance of boron carbide tiles // Int. J. Impact Eng. 2011. V. 38. № 7. P. 535–541.

18. Partom Y., Littlefield D.L. Validation and calibration of a lateral confinement model for longrod penetration at ordnance and high velocities // International journal of impact engineering. 1995. V. 17. № 4–6. P. 615–626.

19. I.G. Crouch. Body armour — New materials, new systems // Defence Technology. 2019. V. 15. P. 241–253.

20. Сильников М.В., Гуменюк В.И., Тарабанов В.Н. Нанотехнологии в средствах индивидуальной и коллективной защиты // Вопросы оборонной техники. Серия 16. 2015. № 3–4 (81–82). С. 11–16.

21. Сильников М.В., Сильников Н.М., Спивак А.И., Барков Д.Д. Разработка пулестойкого материала из баллистической ткани за счет многоступенчатой обработки химическими составами // Вопросы оборонной техники. Серия 16. 2020. № 3–4 (141–142). С. 135–139.